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AbslncL We atend the semiclassical theory ol  spectral fluctuations UI include mmposite 
systems. These systems are characterized hy mme number of weakly mmmunicaling. 
highly chaotic subsystems. They mntain new and longer time scales, depending on the 
mnneding fluxes, in addition to those associaled with the rapid inlernal mixings. The 
new time scales produce discernible modifications in the nature of the level fluctuations 
of the corresponding quantum systems. The theory is applied to two coupled quartic 
cscillators. 

1. Introduction 

The asymptotic properties of simple quantum mechanical systems reflect in various 
ways the nature of their underlying classical counterparts. In recent years, intriguing 
relationships between spectral fluctuation properties and chaotic classical dynamics 
have been discovered. The relationships encountered depend strongly on whether the 
system of interest is bounded as exemplified by the stadium billiard or whether it is 
open such as the kicked rotor. In the former case, it has been conjectured [l] that 
for ‘sufficiently chaotic’ systems, the quantal spectra are extremely rigid, displaying 
strong level correlations as found in the canonical ensembles of traditional random 
matrix theory [2]7. Much numerical work and the beginnings of a semiclassical theory 
[4, 51 support this conjecture. The basic tenet underlying the notion of sufficiently 
chaotic is that the phase-space energy surface gets rapidly mixed everywhere. In a 
statistical sense, the phase space is featureless and characterized by a single mixing 
time parameter 1’ which is inversely related to the Kolmogorov entropy (Lyapunov 
exponent). ‘.%e similarities to the featureless nature of the canonical random matrix 
ensembles are not accidental. On the other hand, the rapidly mixing tenet cannot 
be applied to open systems. For the quantized maps of timedependent systems, it 
was first of paramount importance to establish under what circumstances the quasi- 
energy spectrum would be discrete and the eigenvectors dynamically localized [6], and 
second to connect the localization length with the classical diffusion rate [7]. From 

11 On sabbatical leave from: Depanment of Nuclear Physics, The Weizmann Instilule of Science, Rehovot 
76100, Israel. 
7 This is in stark mnlrast with Poisronian slalistin (absence ol  correlations) expected in inlegrable systems 

[31. 
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this point of new it is not very surprising that the quasienergy spectra of dynamically 
localized systems do not correspond to any of the canonical random matrix ensembles 
[8, 91. With these important distinctions, the understanding of fluctuations in open 
and hounded systems has largely developed independently. Recently though, some 
progress toward bridging these fields has been made by Dittrich and Smilansky (101. 
By considering hounded systems displaying dynamical localization, they have studied 
the transition between having the localization length very small "pared with a 
system size parameter all the way to the inverse situation. In this paper, we shall add 
to this progress from a very different tack We shall not assume the existence of a 
classical diffusion scale, hut rather start from a 'microscopic' picture which has in one 
limit the diffusion image and in another uniform rapid mixing. 

Clearly, requiring a bounded system to be sufficiently chaotic is extremely restric- 
tive and it excludes many systems of physical interest. It is therefore of interest to 
relax this constraint to move toward an understanding of a larger class of systems. 
We shall do this by investigating semiclassically the spectral fluctuations of chaotic 
systems with embedded, isolated partial barriers in their phase spaces. These systems 
may be thought of as composite systems composed of weakly-coupled, highly chaotic 
subsystems. It is easy to conjure up examples; for instance, systems of 2,3,4,. . . , N 
chaotic billiards connected by narrow ducts (windows) fit into this scheme. The phase 
space can no longer be characterized statistically by just the mixing time 1' and in 
section 2 we shall show, with a slight generalization of the periodic orbit techniques 
developed in [4], how the extra structure is manifest in the two-point spectral corre- 
lations. A crucial role will be played by the phase space fluxes crossing the harriers. 
We shall then make connections with the diffusion dominated results of Dittrich and 
Smilansky [lo] in the large-N limit. Imperfect transport harriers in phase space may 
also arise by dynamical constraints rather than configuration space geometry. In sys- 
tems with two degrees of freedom, both cantori and broken separatrices are known 
to provide effective partial isolation [ll). In section 3, we shall apply the generalized 
theory to a system of two coupled quartic oscillators that were recently treated in 
detail by Bohigas, Tomsovic and Ullmo (BTU) [E]. One of the particular cases (cou- 
pling strength) they treated provides us with a good test of the generalized theory 
because the phase space is dynamically structured by four partial harriers that are 
neither too restrictive nor too open and with just five component subsystems, one 
is neither in the sufficiently chaotic domain nor the diffusive regime. The results 
presented here will complement the picture of BTU who found the fluctuations to he 
well described by the properties of generalized random matrix ensembles constructed 
by purely semiclassical considerations. 

2. Semiclassical theory of spectral fluctuations 

21. The spectral measures 

The relationships we are seeking between classical dynamics and spectral fluctuations 
are well expressed in a set of so-called two-point correlation functions or measures. 
These measures give us a quantitative means of characterizing the most important 
aspects of the fluctuations. Ib a large extent, all these measures carry the same 
information and depend only upon two points in a spectrum [Z]; see [13] for the 
original work on the measures. 
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'Ib understand their origin, consider the level density, p(s ) ,  and its integrated 
version (the staircase), N(sl,s2),  which are expressed as 

The sj are the eigenvalues of the system of interest. For convenience, we are using a 
scaled energy variable s that is related to the actual energy E by s = (E- E,,)(p),  
where E, is an arbitrary origin and the brackets indicate a local energy averaging. 
Then the mean level spacing D ( s )  = 1. The basic quantity common to all the two- 
point measures is the probability density of finding distinct levels at s1 and s2. In 
terms of the !eve! density, p ( s ) ,  !his two-pint dPESity, !&(Ei, s2), is 

Rz(s1,sz) = P ( s ~ ) P ( s ~ )  - 6 ( ~ 1 -  s ~ ) P ( s ~ )  (2.2) 

where the 6-function term eliminates the self-correlations. In random matrix theory, 
the measures are defined as averages over an ensemble of matrices with elements se.- 
lected Gaussian randomly. Then an ergodic theorem [14] tells us that if the measures 
are calculated spectrally instead, almost all the individual members of the ensemble 
give the same results as the ensemble. Here with only the spectrum of a single sys- 
tem, the measures are defined as averages over some local region in the spectrum, 
narrow in energy range, but encompassing many levels. The average behaviour of 
R , ( s , , s , )  then depends on the mrdinate ,  r = s1 - s2 and the local mean energy. 
For convenience, the local mean energy variable can be dropped from the notation 
(R2(s l , s2)  - R 2 ( r ) ,  N(sl , s2)  - N ( r ) ,  etc). Note, however, the fluctuations 
typically do depend on the region of the spectrum being used for local averaging 
since some dependence will be due to effects coming from the changing underlying 
classical dynamics with energy. 

One of the best choices for a measure is the variance of the number of levels in 
a spectral window of width T .  Denoted as C2(r) ,  it is simply given by 

P ( r )  = ( N ( r ) 2 )  - (N(r ) )Z  

(2.3) d s ( ~ - s ) R , ( s )  

where the brackets are put in the first line only to underscore the local energy 
averaging aspect. When considered as a function of T ,  C 2 ( r )  allows one to infer a 
great deal from a spectrum mciuding the extent of both ievei repuision and iong-range 
spectral rigidity. 

Dyson and Mehta dealt extensively with an alternative representation of the two- 
point density. They defined the two-level form factor, b ( r ) ,  which is the Fourier 
transform [13] 

r = l / a ~ f i ( p ) ~  is the natural time scale for the form factor in this problem. This 
time is such that two eigenvalues one mean level spacing apart give rise to a phase 
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difference of ZTT in the quantum propagator (T = 1 is the ‘break time’). An 
important property of b( r )  is that its large-r limit is independent of the fluctuations; 
for T -+ CO, b ( r )  + 0 .  This depends only on the spectrum k i n g  real and discrete, 
and there are very few special exceptions (such as the harmonic oscillator). The 
fluctuation properties are determined by b( 7 ) ’ s  small-r behaviour and approach to 
zero. lb give two examples, a Poissonian spectrum with its large fluctuations has 
b ( T )  = 0 for all r while the rigid random matrix spectra have b(0 )  = 1 and it 
decreases linearly with small T ,  approaching 0 for r > 1. The number variance 
expressed in terms of the form factor becomes [13] 

Excluding T = 0,  the quantity 1 - b ( r )  has a natural dynamical interpretation as being 
piopiiitbiid iii the iiie~ii &soa:iite sqiiaie of a paitid irxe of ‘uie propapior. ?“ne 
partial trace is over the vector space spanned by the portion of the spectrum being 
used in the local energy averaging. This interpretation supposes that the spectral 
range is narrow enough that the level density is effectively constant. qua t ion  (2.5) 
is the most useful form of P ( r )  for the present purposes. 

2.2. Periodic orbit lheory 

We outline how periodic orbit theory can be used to calculate fluctuations by extend- 
ing Berry’s theory of spectral rigidity 141. The essential point is to generalize the 
sum-rule of Hannay and Ozorio de Almeida [U] and thus provide a semiclassical 
expression for 1 - b( r ) .  lb begin with, the exact density of states, p( E), is decom- 
posed into its average and fluctuating parts. As is well known, the leading average 
hphayigfiy :e!gt& the nhere y2.e e ~ e y ~  sfiyfzpp %!o~.c 2s r--- ” 

where r = ( q , p )  is a point in a Zddimensional phase space. In this way, a semiclas- 
sical argument lixes the relationship between the physical quantities (1, E) and the 
relevant scaled variables (7, s). Just as in the preceding section, it will be convenient 
to continue using ( r ,  s) for treating the fluctuations. The oscillating part of the level 
density, @(A), about its locally smoothed average can be expressed in terms of the 
semiclassical (Gutmiller) trace formula [16] as 

where the sum goes over all the periodic orbits j with energy s and, positive and 
negative repetitions of ‘primitive’ orbits are considered distinct orbits. Sj and p j  
represent the action along the orbit and the phase associated with the Maslov index 
respectively. Aj is expressible in terms of the period and the monodromy matrix, 
Mj I 

A j  = J+ 
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From this starting point, Berry found the periodic orbit expression for the form factor 
to be 

with k restricted to positive traversals. He argued that for T << 1, the off-diagonal 
terms in the sum vanished on local averaging and 

1 - b ( r )  ( C A f b ( r  - T,) 

j (2.10) 

GZ 271(7). 

The factor 2 in the last form arises from the coherence effect of an orbit with its 
time-reversed partner (assumiig time reversa! izvariance). ?he sum I( r), implici:!y 
defined in the second expression above, can be given a representation as an integral. 
The form is [15] 

I(T) = R ( E )  dr, 6(2d-')(ro - r , ) 6 ( H ( r o )  - E )  (2.11) J 
where r ,  is the point to which the dynamics takes ro after a time 7. C ~ ( ~ ~ - ' ) ( T )  

relates to the 2d - 1 projections of r on the energy shell. The volume of the energy 
shell at E is denoted by O( E). The classical interpretation of this expression is that 
it gives the probability of the ratio of returning to the initial point after the time r 
and the system being found anywhere in phase space ( l /Q(E) ) .  This probabilistic 
interpretation of I ( T )  is the central point of the present paper, since now we can 
apply statistical concepts to evaluate I ( r )  as long as the time scales involved are 
longer than the mixing time t', and some phase-space coarse graining is allowed. It 
is interesting to note that while the quantity I( 7) is a classical object, the factor T in 
equation (2.10) has a quantum origin-it is due to the coherent contributions to the 
amplitude to stay of points along the periodic orbits. The quantum origin of the factor 
2 was explained above. (A detailed discussion of the derivation of equation (2.10) 
and its applications to a class of solid state problems can be found in [17].) 

As a first application, consider a bounded, highly chaotic, and uniformly mixing 
system. In this case, ergodicity implies that the probability to perform periodic 
motion for any time larger than the mixing time is uniformly distributed and hence 
it is l / O ( E ) .  Therefore I ( T )  = 1 which reproduces the sum rule [U]. Note that 
the mixing time T* (the scaled version of the t ' )  cannot be smaller than the shortest 
periodic orbit's period. This explains why Berry used the period of the shortest orbit 
as an estimate for T* (T*  may sometimes require a better estimation). Interestingly, 
only two parameters of the chaotic dynamics were used: (i) the energy surface volume 
that fixes the relation between the physical and the scaled variables; and (ii) the 
mixing time T * .  It can be shown that the non-ergodic dynamics on short time 
scales, correspond to non-universal correlations on energy scales which are inversely 
proportional to r' (saturation). We mention this for the sake of completeness and 
will deal no more with this aspect [4, IS]. 
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Writing 1 for I(T) in (2.10) we find that for bounded and uniformly mixing 
systems we get 

I - b ( r ) = 2 r  T ' < T < ~  

1 (212) = 1  T > i  

which is consistent with the expression derived for the Gaussian orthogonal ensemble 
(GOE) by random matrix theory for T either very small g e t  with T > T * )  or very 
large. The behaviour at intermediate times has not been derived by semiclassical 
means and is determined here by continuing with the small T result up to the point 
where b( T )  first reaches zero. By this time the semiclassical arguments summarized 
here must fail. Since b ( r )  -+ 0 for large T ,  we insert the Limiting value as a rough 
way of interpolating the two regimes. 

2.3. Compmite systems 

The key to treating composite systems is to generalize the statistical arguments for 
obtaining the behaviour of I( T ) .  Consider a system which can be decomposed into 
N weakly coupled domains in phase space. (One can visualize such a system by 
considering N stadia connected by small windows.) Denote the phase-space volumes 
of the individual domains by y ,  ( j  = 1,.  . . , N) and the total volume V = I$. 
The flux T~~ crossing from the j t h  to the ktb domain determines the coupling 
strengths of the composite system, i.e. the smaller the flux, the weaker the connection. 
In the stadia example -yjk is the product of a window's cross section by the mean 
normal velocity (using the scaled time T )  of crossing trajectories. The transition 
probability per unit time to go from the j th  to the kth domain is yjk/V,. I ( T )  can 
be decomposed into N contributing components, 

(2.13) 

The I j ( ~ )  are defined by breaking the integral in equation (2.11) into a sum of 
integrals each taken only Over one phase-space domain, I$. Using the probabilistic 
approach developed earlier, the Ij can be interpreted as the probabilities of starting 
and finishing somewhere in the j t h  region after propagating a time T. If one assumes 
that the mixing within each domain takes place on a much shorter time scale than the 
mixing amongst the various stadia, one can write a set of linear coupled equations 
which govern the behaviour of the I ,  (master equations). Consider the vector * ( T )  

whose elements are the probabilities of being found in one of the V, after a time T 

subject to the initial condition *(O). By choosing the initial condition aj(0) = 1 
and all the other components 0, the probability to remain (or staying probability), I j ,  
is equal to the overlap ( * ( O ) , * ( T ) ) .  The master equation for * ( T )  is 

where M is a (Markov) matrix whose elements are given by the flux-to-volume ratios 

Mjj = CTjk/y. (2.15) 
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The formal solution of this equation is 

*(T) = e - M r * ( o ) .  (2.16) 

The eigenvalues rj of the matrix M have the following properties: one of the 
eigenvalues, say r N ,  always vanishes. This is due to the fact that the probabilities 
must alwap add up to unity. We are assuming that there is a path of communication 
between all the domains, i.e. that M is not reducible. Otherwise, there would be 
additional vanishing eigenvalues, one for each subgroup of linked domains. The 
other eigenvalues may be complex, in which case they appear in conjugate pairs with 
a positive real part. The I j  are the diagonal elements of ecMr and so the sum 
appearing in equation (2.13) is the trace 

N--l .. . - 
x r j ( T )  = Tr (e-"') = 1 + e-rj' 

j=1 

(2.17) 

The last form follows because the diagonalizing transformation of M leaves the trace 
invariant. Thus, the T j  measure the inverse relaxation or equilibration times. The 
expression for E'(?-) incorporating this result is given in the appendix; again the 
integrals are cutoff when b( r )  first attains 0. 

The essential content of equation (2.17) can be seen with the result for N = 2. 

I(7) = 1 +e-rr (2.18) 

where I' = ylZ(Vl-' + V;'). Substituting this result into equation (2.10) gives 

1 - b ( ~ )  = Z T ( I  + e-r'). (2.19) 

The behaviour of b( T)  now depends on the interplay of T and r. We have 

(2.20) 

In words, for times shorter than the equilibration time, the system's form factor 
behaves as though the spectrum is composed of two independent GoE spectra su- 
perposed randomly. At the other extreme (T much longer than r-'), the system 
recovers the form factor of a single GOE. Equation (2.19) governs the transitional 
behaviour as well. This behaviour of the form factor is valid only in the semiclassical 

b ( r ) s  approach to zero is not properly treated; see the discussion of the crossover 
time in [4] and note that superposing independent spectra reduces the crossover time 
by renormalizing T with the density of states. Due to this dilficulty, the small level 
spacing fluctuations are not expected to be accurately reflected in the theory pre- 
sented here (even if the semiclassical trace formula itself was capable of handling 
small spacings). 

As a final comment, note that a bounded system composed of a larger and 
larger number of subsystems must resemble more and more a system with some 
diffusion length scale with the diffusion coefficient being a function of the connecting 
fluxes, Therefore, the theory presented here must recover what is known about the 

;eghy,e Q 1. F G ~  h&j.y=nd thh, t\e stathti-! 2;gdr,ess $+a:? h ; e - ~ ~ ~ ~ ~ , ~  and 
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fluctuations of diffusive systems as N - 03. In the simple case of a linear chain of N 
(B 1) subsystems connected only to their nearest neighbours, the diffusive character 
of the system can be easily shown. For simplicity assume the subsystems are aperiodic, 
but uniform or translationally invariant statistically speaking. This avoids the necessity 
of coherent summing of periodic orbit contributions; see [lo] for the crossover time 
in the more general problem. If the distributions of the domain wlumes and the 
fluxes are uniform, Tr(e-Mr) can be found analytically by a number of methods. 
Letting y denote the transition probability in scaled time units and using periodic 
boundary conditions gives 

Tr (e -M’)  zz Ne-2’rIo(2yr) 

- NJ- 
(2.21) 

where I o ( z )  (= Jo(iz)) is a modified Bessel function of the first kind. This is mlid 
for times such that the diffusion constant multiplied by the time give a length scale 
shorter than the system’s length. Equation (221) inserted into equation (2.10) leads 
to a T’/’ dependence for the form factor as discussed by Dittrich and Smilansky [lo]. 
(The extension to dillusion in more dimensions, and some numerical tests can he 
found in [18].) 

3. Application to the quartic oscillator 

A good testing ground for this theory is provided by the system of two coupled, 
quartic oscillators studied by BTU [12]. From their work, we have already available 
both a long stretch of a quantum spectrum as well as all the classical information 
required to apply the results of section 2 The Hamiltonian they investigated is 

One advantage of this system is that the homogeneity of the potential greatly simplifies 
the classical and semiclassical aspects of the problem since the effect of changing the 
energy is just a rescaling of the orbits. For example, the classical actions scale as 
E3I4. The nature of the dynamics is determined by the magnitude of the coupling 
between the modes, A. When it is zero the system is integrable and as it is decreased 
toward -1, the system becomes progressively more chaotic. b was introduced to 
lower the symmetry from that of a square to that of a rectangle, and the adjustable 
constant a( A )  was inserted for reasons of simplifying the quantum calculations. 

BTU calculated the quantum and classical mechanics of the case ( A ,  b )  = 
(-0.35,~/4) in detail. They obtained to high precision the first 22000 eigenval- 
ues giving the possibility of calculating very accurate fluctuation measures; the large 
majority of the energy levels were obtained to better than of a mean spacing. 
The classical dynamics is a little more complicated. The system contains both regular 
and chaotic regions of phase space. This particular example is approximately 88% 
chaotic by relative phase space volume and approximately 12% regular. The regular 
dynamics, not being of interest here, requires a means for removing its effects. BTU 
made use of the discrete symmetries of the Hamiltonian to classify all the states into 
a regular or chaotic group; all the tori occur in pairs and a near degeneracy is implied 
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for all the regular states and no others. The eigenvalues corresponding to the regular 
region (all the quantizing tori) could then be lifted out of the spectrum leaving only 
those levels associated with the chaotic region; the percentage of eigenvalues removed 
matched well the 12% expectation. 

There are no configuration space barriers in the quartic oscillator as in the ex- 
ample of a string of stadia connected by windows. Instead, there are phase-space 
mechanisms inhibiting transport in the form of broken separatrices. Each has a turn- 
stiie which aiiows oniy a ih i ted  flux of phase points to cross from one side to the 
other. An attractive feature of these barriers is the absence of corners or cusps which 
one often encounters in problems which involve billiards (wave guides). Of all the 
structure in the chaotic domain, only four barriers introduce time scales significant 
enough to require consideration for the level statistics. Each of the five subsystems 
thus implied are determined by defining on which side of the separatrices they are 
found (for details see [12]). Seven subregions are delineated in the surfaces of section 
plotted in figure 1. However, due to the rapid communication implied by the fluxes, 
the regions numbered 1 and 2 effectively constitute only a single region, and similarly 
for 6 and 7. With this taken into account, thc rcspectivc mlumes and fluxes are given 
in table 1. 

Figure t The various, weakly mmmunicating subregions in phase space separated by 
partial transport banien: (a) q1 = 0 Poincak section and (b) qz = 0 Poincae section. 
Both surfaces are needed to show all of the regions, even though the outer perimeter 
of one Seetion roughly mrresponds U) the inner region of the other section. The M M  
islands (regular motion) and some of their SLructure b also shown. Due to the dixrete 
symmetries d the problem, a region and its symmetric primed region wmtitute only 
one region from the point of view of the quantum system within a specified symmetry 
representation. %ken from the second letter of reference [12]. 

The spectral statistics will be calculated separately for each symmetry represen- 

desymmetrize the classical system which can be done by placing a hard wall in both 
the q1 = 0 and q2 = 0 planes. The effect is to reduce the fluxes given in table 1 
by a factor four. As viewed 60m the surface of section, one factor two comes from 
the disappearance of each turnstile's symmetric partner. The other arises because 

tl!iQ,n hpforc k i n g  "bi,ned give an average hehavjour: rhereforey we ,nesi 
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n b k  1. Relative volume and mnnecting fluxes of the chaotic phase space subregions 
as shown in figure 1. The fluxes are calculated for E = 1 and must be scaled as E3/’ .  
Regions 1+2 and 6 f 7  were gmuped together bemuse their mnnecting fluxes are such 
Lhal their barriers muld be ignored. %ken from the second letter of 1121. 

~~ 

Region Relative wlume (%) Area m a l  flux 

1+2 12 

3 13 

4 13 

5 36 

6+7 26 

~ 

1.1 

1.2 
(!+2)-? o.ahn 

3-4 0.13 

2.6 

2.1 
5-(6+7) 0.28 

before desymmetrization a phase p i n t  hopped across two gates in the turnstile at 
each iteration of the map, but afterward only one (the phase points can be thought 
of as striking the desymmetrized surface of section twice as often). The reduction of 
four in the total phase-space volume is automatically accounted for in the scale of T 
and the relative wlumes are left unchanged. Thus overall, the r, are reduced by a 
factor four. 

With table 1, the M matrix is easily constructed and diagonalized. Due to the 
homogeneity of the potential we may obtain the r j  at any energy and scale them 
appropriately to find the results for any other energy. We can also predict the energy 
dependence of the fluctuations easily. In this example, a stretch of y 6000 levels 
(the 16OOOth to 22000th levels) is used to calculate C * ( r ) .  The T, are rl = 19.67, 
Tz = 11 .oo, rs = 6.56, r4 = 1.70, and Ts = 0.0 for a mean energy equal to 706, 
thus fixing the prediction for the statistics (using the equation in the appendix). In 
figure 2, we show several CZ(f)  curves for comparison. In addition to the quartic 
oscillator results, the m prediction and our semiclassical prediction, are the random 
matrix ensemble result expected for a single chaotic zone (as though the transport 
barriers were easily crossed) and also for five disconnected zones (as though the 
barriers could not be crossed at all). Of course, the quartic oscillator lies intermediate 
between these extremes. A final cuwe, that being Poissonian, can be thought of as 
the limit of a large number of non-communicating regions. 

Before passing judgment on the semiclassical analysis, it is necessary to comment 
on our expectations. The leading large-r behaviour of C2( r )  for a single GOE is 

where a = 2/n2. For N randomly superposed GOE, the same formula applies with a 
replaced by Na. The semiclassical derivation only yields a (or Na) exactly and not 
6. The root cause is the interpolation difficulty mentioned at the end of section 2.2. 
In fact, if we evaluate the error in b analytically for the case of five regions weighted 

semiclassical determination of b is too large by 0.654. For a single GOE, the error 
is 0.110. So all that can be anticipated from the semiclassical treatment of C 2 ( f )  
is that the large-r behaviour parallels the quartic oscillator’s and not that there is 
absolute agreement. It also seems plausible that the large-r difference between the 

&$ f,veii *i ;he wp;mes Lq :ab!e 1 taking tL,e ;G ze;G, the 
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- 
L 

W 

- 
N 

2.5 

2.0 

1.5 

1.0 

0.5 

Figure I Number variance, C2(r): (Q) the quanlum spectral fluctuations fmm the 
!6%!h !e !!IC 22m!h !PVP!S; ( b )  sePmic!asicI! p~dic!ie!! QC YC!~QE 2.3; Ir\ dnole 

we; (d )  five randomly superposed GOE spectra weighled according to lhe appmpriate 
fractional phase-space MlUmeS given in table 1; (E)  Poissonian result; and (f) generalized 
ensemble prediction given h, EN in [E]. See text for further explanafion. 

r, ----o-- 

two should approach a constant somewhere in a range between the errors in b at the 
two extrema mentioned just above. This is seen to be the case in figure 2. 

4. Discussion and conclusions 

The simplest classically mixing systems with a finite phase-space volume achieve statis- 
tical equilibrium after a short time independently of the state in which they are initially 
prepared. The equilibrium distribution is the phase-space invariant measure. We can 
characterize these distributions by a single parameter-the phase-space volume and 
the observation that the distribution is invariant under canonical transformations. 
This way of describing the equilibrium state of classical& chaotic systems is the direct 
analogue of describing quantum systems in terms of random matrix theory, where 
the ensemble is completely determined once the mean level density is prescribed, to- 
gether with invariance of the measure under appropriate coordinate transformations 
(the dynamics of the ensembles imply essentially instantaneous complete mixing). The 
analogy becomes complete through the proportionality of the phase-space volume and 
the mean level density (equation (2.6)). This analogy is borne out in the semiclassical 
derivation of the spectral form factor 6 ( + )  (equation (212)), where the only require- 
ment on the classical dynamics was that an equipartition is reached after a sufficiently 
short time. Not all systems can be characterized in terms of a fast mixing stage 
followed by equilibrium distributions. We have considered a larger class of systems 
with kolated eansport barriers which introduce new time scales. ' h e  classical and 
quantum mechanical descriptions are affected in a complementary way as predicted 
by the semiclassics and demonstrated with the coupled quartic oscillators. In the limit 
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that the number of barriers is k e d ,  each becoming more and more open, the random 
matrix results for the rapid, fully mixing case are recovered. Though not surprising, 
understanding the transition to the behaviour of one of the canonical ensembles in 
this way better defines the conditions to be met before invoking these ensembles. 

Composite systems also include as a limiting subclass, systems with the number 
of barriers large and tending to infinity. If only the neighbouring regions directly 
mmmunicate, an infinite chain (lattice in more dimensions) is formed. The classical 
mixing motion within each constituent along with the transport leads to a global dif- 
fusive evolution, and due to the infinite volume of the phase space, equilibration is 
never achieved. A new time scale-the diffusion time now describes the equilibration 
process, and it induces essentially new features in the corresponding spectral fluctua- 
tions. The proportionality of b ( r )  to r1I2  instead of r is one direct consequence. 

This work complements the image of 'semiclassical' generalized ensembles con- 
structed in the theoly of BTU. These ensembles have not yet been treated analytically 
in order to obtain their predictions and Monte Carlo calculations are still needed. 
It would be interesting to know to what extent the semiclassical theoly given here 
would be consistent with the leading order asymptotic solution to these ensembles. 
Assuming this consistency and that the BTU ensembles would lead to banded random 
matrices for diffusive systems, one would begin to have a dynamical image of the 
relevance and asymptotic nature of banded ensembles for diffusive systems. 

. 
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Appendix 

With equations (25), (2.10) and (2.17), the number variance C 2 ( r )  is found to be. 

- 2E,(rjr,,,) 4- 2Real{  El(rjr,,, + Inirr,)} (-4.1) 

where E,(z), Si(z)  and Ci(z) are the exponential integral, sine integral and cosine 
integral functions, respectively. The T j  are those rescaled to the natural units of the 
problem (multiplied by 2 ~ t i ( p ) ~ ) .  The quantity T, is taken as the p i n t  where b ( r )  
first attains the d u e  0. It was located by setting up a recursive method. 
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